Studies of the Zero-field Splitting for Mn²⁺ in 6H-RbMgF₃ Crystal

Wen-Chen Zheng^{a,c}, Yang Mei^a, Xiao-Xuan Wu^{a,b,c}, and Qing Zhou^a

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China.

^b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China. ^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,

Reprint requests to W.-C. Z.; E-mail: zhengwc1@163.com

P. R. China.

Z. Naturforsch. **59a.** 961 – 963 (2004): received August 30,2004

By using the spin-orbit coupling mechanism and the empirical superposition model, the zero-field splittings D of Mn^{2+} ions on both Mg^{2+} sites in hexagonal 6H-RbMgF₃ crystal are calculated from the structural data of both Mg^{2+} sites. The calculated results of both methods confirm the suggestion that Mn^{2+} in 6H-RbMgF₃ occupies the Mg^{2+} (I) site (which has D_{3d} site symmetry) and the zero-field splitting D of 6H-RbMgF₃: Mn^{2+} is explained reasonably.

Key words: Electron Paramagnetic Resonance; Crystal-Field Theory; Superposition Model; Mn²⁺; 6H-RbMgF₃.